

A Voyage to Uncovering Telemetry
Identifying RPC Telemetry for Detection Engineers

Jonathan Johnson

Acknowledgements
A huge thank you to the following individuals. Simply put, this research would not have been
possible without their help and patience. They not only helped me understand multiple
concepts but served as sanity checkers throughout the entire process. Again, thank you for your
time and patience:

• Jared Atkinson, SpecterOps
• Lee Christensen, SpecterOps

This research was inspired by and would not be possible without the incredible work performed
by the following individuals:

• Matt Graeber, Red Canary
• Will Schroeder, SpecterOps
• Matt Hand, SpecterOps
• James Forshaw, Google

Table of Contents
INTRODUCTION ... 1

WHAT IS RPC? .. 2

COMPONENTS .. 2

COM & RPC ... 9

RPC PROCESS ... 9

WHY IS IT INTERESTING FROM A DEFENSIVE PERSPECTIVE? ... 11

IDENTIFYING RPC COMPONENTS .. 12

DCSYNC TL;DR .. 12

BLOGS THAT GO MORE IN-DEPTH .. 13

REMOTE SERVICE CREATION TL;DR .. 13

BLOGS THAT GO MORE IN-DEPTH .. 13

INTERFACE UUID IDENTIFICATION .. 14

SERVER CODE IDENTIFICATION ... 15

SERVER ENDPOINT IDENTIFICATION ... 17

METHOD IDENTIFICATION ... 19

PURPOSE ... 28

RESEARCH DATA TO TELEMETRY ... 29

TELEMETRY TO SCALABILITY ... 35

CONCLUSION .. 38

1

Introduction
Jared Atkinson introduced the capability abstraction1 methodology last year to build more
robust detections using built-in (Windows Security Events) and commercial tooling (Various
different EDR products). This process takes an attack technique, lists out the tools that can
perform that attack, and then breaks down the layers of technology used under the hood. One
of the most common things we (the detection team at SpecterOps) have identified as we’ve
repeated this process is that many attack techniques involve an interprocess communication
(IPC) mechanism, specifically Remote Procedure Calls (RPC), but we didn't see a lot of telemetry
capabilities into this technology at first. That was not because there was no telemetry to be
offered, it was because we didn't understand RPC technology to its full extent. Due to that
issue, further investigation into possible telemetry was needed.

1 https://posts.specterops.io/capability-abstraction-fbeaeeb26384

2

What is RPC?
RPC stands for remote procedure call and is a technology used for distributed client/server
communications between programs. This technology allows applications to send signals to each
other to perform an operation. RPC is used for everyday procedures that happen within
Windows environments ranging from authentication, service creation, directory replication,
and more. However, I found that before I can understand how adversaries might manipulate
this technology to perform malicious behavior, I had to understand how the technology and its
mechanisms work.

Within this write-up, I will analyze components of Microsoft RPC 2(MSRPC) implementation and
its supporting development tools. I will go over various ways an application or security
researcher can interact with RPC servers, but this research will not cover the implementation of
the MSRPC network protocol.

Components
• RPC Protocol
• RPC Client/Server
• RPC Interface
• RPC method
• Client/Server stubs
• NDR Engine/Marshalling
• RPC Run-Time
• RPC endpoint mapper
• Endpoint
• Name Service Database

RPC Protocol
The RPC protocol provides a method of inter-process communication between a server and
client applications. RPC provides an application developer a generic way to execute a procedure
(a.k.a. a function) in a local or remote process without having to understand the network
protocols used to support the communication. RPC protocols can be used to either facilitate
communications from one host to another (DCOM RPC) or it can be used to facilitate
communications, as well as carry out the instructions for that communications. In Window
environments, RPC commonly works over the network via named pipes and TCP/IP and locally
via advanced local procedure calls (ALPC). For the purposes of this paper, I will only be
discussing the most common protocols in which RPC occurs over: named pipes and TCP/IP. For

2 https://docs.microsoft.com/en-us/windows/win32/rpc/rpc-start-page

3

more information about ALPC, see Clément Rouault and Thomas Imbert talk covering the
subject (https://pacsec.jp/psj17/PSJ2017_Rouault_Imbert_alpc_rpc_pacsec.pdf3).

Microsoft supports “service based” protocols by default on Windows. These protocols are
services that Microsoft has defined. They are built out for various functionalities, like printer
capabilities, directory replication, service creation and more. Many of these protocols use RPC
to act as the facilitator and the fulfiller of the communications. Examples of common service-
based RPC protocols are:

• Service Creation (MS-SCMR)4
• Directory Replication Service (MS-DRSR)5
• Remote Registry (MS-RRP)6
• Scheduled Task (MS-SCMR)7
• Print System (MS-RPRN)8
• Windows Management Instrumentation (MS-WMI)9

In order to understand the various components within RPC, defining what an RPC client\server
is and what it can be is required. Within some of the sections below, I will add screenshots of a
custom RPC client\server application I built out utilizing the Microsoft Interface Definition
Language (MIDL – this concept is described more in depth with the upcoming sections) format
supplied by Microsoft. This is meant to add context around some of the sections. If anyone
would like to go through the process of building out their own applications as well, a good walk-
through can be found here:

https://www.codeproject.com/Articles/4837/Introduction-to-RPC-Part-
1#Implicitandexplicithandles1710

3 https://pacsec.jp/psj17/PSJ2017_Rouault_Imbert_alpc_rpc_pacsec.pdf
4 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-scmr/d5bd5712-fa64-44bf-9433-
3651f6a5ce97
5 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-drsr/06205d97-30da-4fdc-a276-
3fd831b272e0
6 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-rrp/0fa3191d-bb79-490a-81bd-
54c2601b7a78
7 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tsch/d1058a28-7e02-4948-8b8d-
4a347fa64931
8 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-rprn/d42db7d5-f141-4466-8f47-
0a4be14e2fc1
9 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-wmi/c476597d-4c76-47e7-a2a4-
a564fe4bf814
10 https://www.codeproject.com/Articles/4837/Introduction-to-RPC-Part-1#Implicitandexplicithandles17

4

RPC Client/Server

All the code needed to interact with a Microsoft supported RPC Protocol is pre-compiled and
stored within the RPC server. Microsoft did this so that developers did not have to write the
code needed to interact with all MSRPC interfaces without needing to implement the calls at a
protocol level. RPC server is not an application. It is code that holds the definitions for the RPC
interface GUID, transport protocols (e.g. named pipes or TCP/IP), methods, and method
parameters needed to complete the RPC communication, assuming the client is coded correctly
(this will be explained more in the following sections).

The RPC server can live within DLL, EXE, or SYS binaries, but these applications are not the
application itself. For example, if the RPC server code is stored within services.exe, services.exe
is not the RPC server. Services.exe contains the server code. It is stored within the applications
code, but not the application itself.

In order for RPC communication to be initiated, the RPC server must be started, its functions
exposed to the RPC Runtime, and actively listening for connections. Then the client exposes its
functionalities to the RPC Runtime, connects to the server by specifying the UUID (universally
unique identifier) of the interface, and begins communicating with the server. Remember, the
client\server code is typically embedded within an application, but the application is not always
the RPC client or RPC server.”

RPC Interface
When using Microsoft’s development tools, an RPC interface is defined by the Microsoft
Interface Definition Language11 (MIDL). MIDL includes what protocol the interface is associated
with, the methods, and their parameters that interact with the interface. Each interface is tied
to a universally unique identifier (UUID) that is 128 bits or 16 bytes.

Below is an example of an IDL file that is defining the RPC interface:

11 https://docs.microsoft.com/en-us/windows/win32/midl/midl-start-page

5

The above shows the UUID of the interface that is being exposed, the interface name (Test),
along with the different methods (methods are defined in the next section) that can be invoked
while interacting with this interface.

The interface can be thought of as the bridge between the RPC client and server. The RPC client
must implement the interface, and the RCP server must expose the same exact interface
otherwise communication will not occur.

Some of the ways a client can connect to the server are as follows:

1. An RPC client code calls a Win32 API that will implement an RPC interface. This can be
seen inside of native Windows binaries.

2. An RPC client contains the necessary IDL (Interface Definition Language) code baked in
so that it can talk to the RPC server. An example of this can be found within Mimikatz
12code.

3. An RPC client will talk to the RPC server directly by implementing the RPC over TCP/IP or
RPC over named pipe protocols and will not interface with the client’s OS’s RPC runtime.
This is seen within Impacket13, where the all the client-side components needed to
successfully communicate to the RPC server are handcrafted. This will include hand
crafting the client stub for serialization, code needed to fit the NDR (Network Data
Representation) format, RPC method code, RPC handle binding, etc.

12https://github.com/gentilkiwi/mimikatz/blob/b008188f9fe5668b5dae80c210290c7efa872ffa/modules/rpc/kull_
m_rpc_ms-drsr_c.c#L33
13 https://github.com/SecureAuthCorp/impacket/blob/master/impacket/dcerpc/v5/drsuapi.py

6

RPC Method

Methods are functions that the RPC server exposes to perform a specific behavior. When these
methods are called, they accept parameters and arguments, perform the task, then return
data/results back to the client. Each RPC method is identified by an OpNum. OpNum’s are given
to a method based on where they are defined within the Server code. For example, below
shows two different methods (start_notepad and start_cmd) within the server code:

As shown above, the server code will define each function. In this instance, start_notepad
would correlate with OpNum #0, where start_cmd will correlate with OpNum #1.

Identifying the OpNum is useful to understand the correlating the method during the analysis of
RPC communications and we can then answer the following:

1. Why the method was invoked?

2. What are the behavioral actions that occurred from the RPC communication?

Client/Server Stubs

Stubs are used to serialize/deserialize the parameters being passed to the method, as well as
interface with Windows’s RPC runtime to send/receive data over a transport. When the client
wants to use a method, it will pass the parameters needed for that method to perform the
specific task. The parameters need to be transported to the server application. Before the
transport of these parameters can happen, the client stub must serialize the parameters. The
server will deserialize or “unpack” the parameters before feeding it to the exposed method
function that is being invoked.

The following image shows an example of what the client stub may look like, however note that
in this code no parameters are being passed to the methods:

7

The client stub converts the parameters being passed to the method into an NDR format, which
must be used so that the NDR engine (explained in next section) can transport the serialized
data to the [RPC] server application. Once the server stub retrieves the parameters, it will
deserialize the data from NDR to the format the server needs.

NDR Engine

The Network Data Representation engine is responsible for the marshalling of DCOM & RPC
components. Once the client stub serializes the method’s parameters, that data must get to the
server stub somehow. This transportation is done through the runtime which is driven by the
NDR engine.

RPC Runtime

The RPC runtime holds the operating system’s core RPC services, such as the endpoint mapper.
The RPC runtime is also responsible for the transportation of the serialized parameters from the
client stub to the server stub. The RPC Runtime code can be found in the Rpcrt4.dll binary.

RPC Endpoint Mapper
The endpoint mapper is a service that is located on every Windows host and can be seen as
epmapper. This service maintains the database of endpoints that clients use to map an
interface to endpoints. At runtime, this service is started and acts a director to map
client/server communication.

Name Service Database (Locator)

The Name Service Database allows client applications to use a logical name instead of a specific
network address/protocol sequence. Microsoft identifies that this can be seen with some

8

printer RPC communications, but personally I haven’t seen this. Based on this article14, it seems
that this service is not supported on Windows Vista and later.

Endpoint

An endpoint is the TCP/IP port (ncacn_ip_tcp), or named pipe (ncacn_np), that the client will
use to communicate with the server. The server will listen on this endpoint and wait for the
client to initialize the communication. There are two types of port endpoints - static and
dynamic. Static endpoints are used when an RPC Protocol will communicate over the same
port/named pipe every time. A dynamic endpoint will be used when a range of ports are
utilized, or if the protocol allows connection over ncacn_ip_tcp and ncacn_np.

The client\server code below shows an example of a static endpoint being implemented so that
the two applications can successfully connect:

Client:

Server:

14 https://docs.microsoft.com/en-us/windows/win32/rpc/using-microsoft-locator

9

COM & RPC
The Component Object Model (COM) is a standard used by software developers to interact
with operating system components in different languages without needing to reimplement
client interfaces. This technology allows objects to interact across processes and computer
boundaries. Generally speaking,

• Interaction between COM objects on a local host is known commonly as “COM”
• Interaction between COM objects between two remote hosts is commonly known as

Distributed COM (DCOM).

DCOM 15uses Microsoft’s RPC framework. COM/DCOM sits at a layer above RPC. RPC is used to
marshal the interaction requests, where DCOM is used to fulfill the interaction requests.

Although this paper will not cover COM/DCOM components, it is good to recognize that these
two technologies do work together.

RPC Process
1. A process loads an RPC server and registers it with the RPC runtime
2. Client code implements an RPC interface.
3. Parameters are defined for the method that the client wants to invoke.
4. Parameters are serialized via client stub in an NDR format.
5. The NDR engine will drive the RPC runtime, which transports the serialized data to the

server applications.
a. Endpoint will be determined by interface.
b. Mapped either by the RPC Name Service Database 16 (which allows client

applications to use a logical name instead of a specific network address/protocol
sequence) OR RPC Endpoint Mapper (which will utilize endpoints (ports/named
pipes) instead of logical names).

6. Remote machine’s RPC runtime accepts the incoming communication and passes the
serialized data to the RPC server stub.

a. Once communication a Bind is created to the context handle to allow the
connection to stay persistent until client is done sending requests.

7. Server stub will deserializes the parameters.
8. Parameters are passed to the method.

15 https://docs.microsoft.com/en-us/windows/win32/midl/com-dcom-and-type-libraries
16 https://docs.microsoft.com/en-us/windows/win32/rpc/the-rpc-name-service-
database#:~:text=To%20use%20a%20simplified%20explanation,protocol%20sequence%20and%20network%20ad
dress.

10

9. Methods are invoked.
10. If there is a reply, server stub serializes the outgoing information and transmits it back

through the runtime.

Note: Again, RPC servers code can be stored in either a DLL, EXE, or SYS binaries. Server binaries
are loaded into the runtime prior to the client making the connection request. A request can’t
be accepted if the server isn’t loaded within the runtime. A lot of server code is loaded on boot
(lsass.exe, services.exe, etc)

RPC Process Map

11

Why is it interesting from a defensive perspective?
As discussed above, an attacker can implement an RPC Interface one of the following ways:

1. An RPC client code calls a Win32 API that will implement an RPC interface. This can be
seen inside of native Windows binaries typically.

2. An RPC client contains the necessary IDL (Interface Definition Language) code baked in
so that it can talk to the RPC server. An example of this can be found within Mimikatz
17code.

3. An RPC client will talk to the RPC server directly by implementing the RPC over TCP/IP or
RPC over named pipe protocols and will not interface with the client’s OS’s RPC runtime.
This is seen within Impacket18, where the all the client-side components needed to
successfully communicate to the RPC server is handcrafted. This will include hand
crafting the client stub for serialization, code needed to fit the NDR format, RPC method
code, RPC handle binding, etc.

This gives an attacker multiple avenues to communicate with the RPC Server. However, due to
the technology set in place, they can’t control the RPC Server (given they are trying to connect
to a Microsoft supported RPC server). Documenting different RPC servers holds value for
defenders. Matt Nelson has documented RPC servers inside of this GitHub Gist.19

17
https://github.com/gentilkiwi/mimikatz/blob/b008188f9fe5668b5dae80c210290c7efa872ffa/modules/rpc/kull_m
_rpc_ms-drsr_c.c#L33

18 https://github.com/SecureAuthCorp/impacket/blob/master/impacket/dcerpc/v5/drsuapi.py
19 https://gist.github.com/enigma0x3/2e549345e7f0ac88fad130e2444bb702

12

Identifying RPC Components
In a previous blog post - Utilizing RPC Telemetry 20 by Jared Atkinson, Luke Paine, and myself
briefly walk through how to identify an RPC Server using Capability Abstraction and utilize the
telemetry that correlates with it to create an effective detection. In this blogpost we didn’t go
over the specifics on how we captured each section of that data for research, then correlated
the research data with actual telemetry that can be used in scale. That was done on purpose, as
it went beyond the scope of that post. Below will be a detailed walk through on how we can
identify an RPC Server, see the communication between client and server, and the methods
being invoked. After that, we will correlate the research data, with data that we have found can
be used in real world environments for telemetry.

For this paper, the following attacks will be looked at to help show RPC’s technology and how
defenders may use the correlating telemetry to find malicious activity - DCSync and Remote
Service Creation. I chose these two use cases because one attack holds the RPC server code in a
DLL, the other in an EXE. Also, these attacks are well known, so going in depth about how these
attacks work won’t be necessary as there are plenty of great posts out on both subjects.

DCSync TL;DR
DCSync is a technique used to capture credentials by impersonating a Domain Controller. When
this is done the attacker is taking advantage of domain replication via the Directory Replication
Service RPC Protocol (MS-DRSR) 21. The interface specific for this attack will be DRSUAPI22. The
attacker must obtain a user with high privileged rights. Typically, these rights are given by
default to the Domain Administrators, Enterprise Administrators group, or DC computer
accounts but this doesn’t have to be the case. The attacker needs the extended rights:

• DS-Replication-Get-Changes-All23 (GUID - 1131f6ad-9c07-11d1-f79f-00c04fc2dcd2)
• DS-Replication-Get-Changes24 (GUID - 1131f6aa-9c07-11d1-f79f-00c04fc2dcd2)

These extended rights are needed to access the Domain-DNS Class25 object. Once access to this
object is successfully acquired, replication to the NC replica with AD can be achieved via
IDL_DRSGetNCChanges function.

20 https://posts.specterops.io/utilizing-rpc-telemetry-7af9ea08a1d5
21 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-drsr/f977faaa-673e-4f66-b9bf-
48c640241d47
22 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-drsr/063618ed-b2e2-4983-ab13-
3ed056700641
23 https://docs.microsoft.com/en-us/windows/win32/adschema/r-ds-replication-get-changes-all
24 https://docs.microsoft.com/en-us/windows/win32/adschema/r-ds-replication-get-changes
25 https://docs.microsoft.com/en-us/windows/win32/adschema/c-domaindns

13

The process to perform this attack is as follows:

1. Attacker obtains user with the specified extended rights.
2. Targets a Domain Controller to replicate.
3. Requests the replication via IDL_DRSGetNCChanges.
4. Obtains AD secrets.

Blogs that go more in-depth
• Mimikatz DCSync Usage, Exploitation, and Detection by Sean Metcalf26
• Abusing Active Directory Permissions with PowerView by Will Schroeder27
• Syncing into the Shadows by Jonathan Johnson28

Remote Service Creation TL;DR
Creating a service is common by an attacker for:

• Persistence
• Privilege Escalation
• Lateral movement.

I am going to focus on the lateral movement aspect of service creation. How an attacker can
create a service on a remote host. This has been a common attack that has been identified
when an attacker wants to move from one host to the other with SYSTEM level privileges. This
can be achieved custom tooling that will interact with the API’s -
CreateService/OpenSCManager or by interacting with the Registry (RegCreateKey, RegSetValue)
within the HKLM\SYSTEM\CurrentControlSet\Services* key. Whichever way they decide to,
the will all use the Service Control Manager Remote Protocol (MS-SMCR). There are plenty of
native and non-native ways to create a service, the use case for the purpose of this paper is
sc.exe.

Blogs that go more in-depth
• Create or Modify System Process: Windows Service29
• From DnsAdmins to SYSTEM to Domain Compromise30

26 https://adsecurity.org/?p=1729
27 http://www.harmj0y.net/blog/redteaming/abusing-active-directory-permissions-with-powerview/
28 https://medium.com/@jsecurity101/syncing-into-the-shadows-bbd656dd14c8
29 https://attack.mitre.org/techniques/T1543/003/
30 https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/from-dnsadmins-to-
system-to-domain-compromise

14

Interface UUID Identification
With each of these attacks it has been identified that both utilize the RPC technology. As
defined above, RPC interface will act as a bridge between the client and server code. However;
how can these interfaces be identified for each of the use cases? Typically, this can be found
within the Introduction\Standard Assignments section within the Microsoft Documentation
that is defining each procedure.

MS-DRSR:

MS-SCMR:

15

Server Code Identification
Identifying where the RPC Server code is stored is going to be the next step. By identifying this, I
know what to monitor for the rest of my testing. To do this I will be using a function inside of
NtObjectManager31 by James Forshaw called “Get-RpcServer”.

PS > Install-Module NtObjectManager

PS > Import-Module NtObjectManager

After the module is installed and imported, I will set the $rpc variable to search across the
C:\Windows\System32\ directory and identify any RPC servers.

PS > $rpc = ls C:\Windows\System32* | Get-RpcServer -
DbgHelpPath
“C:\Tools\WindowsSDK\WindowsKits\10\Debuggers\x64\dbghelp.dll”

The DbgHelpPath flag will pull symbols for method names if they exist. In order to use this flag
the WindowsSDK32 must be installed.

If I wanted to parse RPC Clients as well, I would need to add the -ParseClients flag at the end,
like so:

PS > $rpc = ls C:\Windows\System32* | Get-RpcServer –ParseClients -
DbgHelpPath “C:\Tools\WindowsSDK\WindowsKits\10\Debuggers\x64\dbghelp.dll”

This will store RPC Servers and Clients within the $rpc variable.

Next, I will identify where the Interface UUID is stored, which will give me the file path of the
RPC Server.

MS-DRSR:

PS > $rpc | ? {($_.InterfaceId -eq 'e3514235-4b06-11d1-ab04-
00c04fc2dcd2')} | Select FilePath

If I wanted to parse clients as well as servers (the second command above), then to show only
the RPC Server the command would be this:

PS > $rpc | ? {($_.Client -eq $False) -and ($_.InterfaceId -eq
'e3514235-4b06-11d1-ab04-00c04fc2dcd2')} | Select FilePath

31 https://github.com/googleprojectzero/sandbox-attacksurface-analysis-tools/tree/master/NtObjectManager
32 https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk/

16

As it can be seen above, the server code that gets exposed to the runtime is ntdsai.dll. These
commands have to be ran on the Domain Controller because Domain Controllers are the only
systems where ntdsai.dll is stored.

MS-SCMR:

PS > $rpc | ? {($_.InterfaceId -eq '367ABB81-9844-35F1-AD32-
98F038001003')} | Select FilePath

As it can be seen above, the server code that gets exposed to the runtime is services.exe.

17

Server Endpoint Identification
Now that I have identified where the RPC Server code is stored, I want to find the endpoints
that are used to connect the client to the server via interface. To do this we can explore the
Transport on the protocol page. This is stored in different sections on the Protocol page.

MS-DRSR:

Here we can see that the RPC transport for this protocol is done over TCP. There is no static
port or named pipe being used, but this is identified at runtime. The Endpoint Mapper will
identify the dynamic endpoint that was prescribed to the server when the client request
communication.

MS-SCMR:

The above might be showing the communication can happen three ways, but reality this
interface can be implemented one of two ways:

18

1. A SMB named pipe (\PIPE\svcctl)
2. TCP

19

Method Identification
So far, the interfaces that two separate RPC protocols, where the server code is stored for these
protocols, and the endpoints that the interfaces use have all been identified. The next thing I
want to do is set up the monitoring capabilities needed to see what method calls and verify the
endpoints that are utilized when a client initiates a request to perform either a service creation
or DCSync. To see this, I will:

1. Set up Event Tracing for Windows (ETW)33 captures on the remote host to see the
method and endpoint information.

2. Capture ProcMon data on both the local and remote host to show the endpoint and
server/client information.

3. Utilize Wireshark on the remote host to see the network data surrounding the
communications.

The installation of third-party tools will not be demonstrated, nor the capturing process. The
captures will be shown to show what the result should look like. The ETW walkthrough can be
found in this blog – Utilizing RPC Telemetry34.

MS-DRSR:

The DCSync attack was executed via Mimikatz, utilizing a Domain Admin account (Thor). The
command looks like the following:

lsadump::dcsync /domain:marvel.local /user:vision

33 https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
34 https://posts.specterops.io/utilizing-rpc-telemetry-7af9ea08a1d53

20

ETW Capture:

Highlights of what this data is identifying:

• RPC server call with the interface UUID of - e3514235-4b06-11d1-ab04-00c04fc2dcd2
• The protocol was TCP
• The Endpoint was 49667
• OpNum (Method) was #3. This correlates to IDL_DRSGetNCChanges35. This OpNum can

be correlated with the Microsoft Documentation to find its corresponding method:

This context helps verify the information that was read on this protocol’s documentation
pertaining the endpoint mapping. One thing to note is that this isn’t a static port. This port can

35 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-drsr/b63730ac-614c-431c-9501-
28d6aca91894

21

be excluded in the firewall and then the endpoint mapping service will choose another port to
talk to the server.
ProcMon Capture:

Client:

This data is fairly straight forward. It is identifying that the client is starting this RPC call,
reaching out to the Domain Controller, EARTH-DC, on port 49875. That port then gets mapped
to 49667 via Endpoint Mapper service.

I want to see the acceptance of this communication on the server side.

Server:

Above it can be see that LSASS is accepting the communication from ASGARD-WRKSTN, where
the client initiated the connection request. Why is this the case if it has been identified that
ntdsai.dll holds the RPC server code for the DRSUAPI interface? Through some testing I found
that the LSASS process on Domain Controllers will load ntdsai.dll into the runtime. Since this is
the case, it could be said that LSASS holds the server application hosting the server code via
ntdsai.dll for this interface and when a client wants to communicate with this interface, LSASS
will accept that request.

22

Note: LSASS holds RPC server code for multiple different interfaces. LSASS is hosting the code
by loading the DLL which implements the server, ntdsai.dll. This can be seen below by showing
the time between Sysmon Event ID 7 (ImageLoad) and the machines boot time:

23

EventID 7 – ImageLoad:

Boot time:

Above it can be seen that NTDSAI is loaded into LSASS within less than a minute of when the
machine was started, meaning the server code associated with the DRSUAPI interface was
loaded to the runtime at boot.

24

Through this testing, I have identified a process that could serve as a pivot in a detection in the
future. It is also seen that after LSASS accepts the call, it reads the NTDS.dit file. This is where
secrets, such as NTLM password hashes, are stored for the domain. After this is done, the data
is sent back over the wire to the client. The next thing to identify and verify, are the methods
that were used to obtain those secrets from NTDS.dit.

Wireshark Capture:

Highlights from this network capture:

- Source IP/Port.
- Destination IP/Port.
- Protocol that was used for the communication between hosts. This correlates to the

interface that was used for the communication because dynamic endpoints are
implemented for this protocol.

- Methods that were implemented.

MS-SCMR:

Service Creation was performed via sc.exe, utilizing a Domain Admin account (Thor). Service
creation can be done by an Administrator or SYSTEM on a host. This test was conducted against
a Domain Controller, hence why a DA account was used. The command looks like the following:

PS > sc.exe \\IP-Address-of-remote-host create test
binpath=”C:\Windows\System32\notepad.exe”

25

ETW Capture:

OpNum 12 – RCreateServiceW:

Highlights of what this data is identifying:

• RPC server call with the interface UUID of - e3514235-4b06-11d1-ab04-00c04fc2dcd2
• The protocol was TCP
• The Port was 49676. ETW didn’t capture the pipe name of the endpoint used

(\PIPE\svcctl) and transformed the Port to the “Endpoint” section.
• OpNum (Method) was #12. This correlates to RCreateServiceW36. This OpNum can be

correlated with the Microsoft Documentation to find its corresponding method:

36 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-scmr/6a8ca926-9477-4dd4-b766-
692fab07227e

26

OpNum 15 – ROpenSCManagerW:

Highlights of what this data is identifying:

• RPC server call with the interface UUID of - e3514235-4b06-11d1-ab04-00c04fc2dcd2
• The protocol was TCP
• The Port was 49676 – ETW didn’t capture the pipe name of the endpoint used

(\PIPE\svcctl) and transformed the Port to the “Endpoint” section.
• OpNum (Method) was #12. This correlates to ROpenSCManagerW37. This OpNum can be

correlated with the Microsoft Documentation to find its corresponding method:

37 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-scmr/dc84adb3-d51d-48eb-820d-
ba1c6ca5faf2

27

ProcMon Capture:

Client:

This capture is pretty straight forward. This is showing that sc.exe (native Windows binary) is
sending TCP data to EARTH-DC via 49994, which the Endpoint Mapper service will redirect to
49676 so that the server will accept the communication.

Server:

On the server side I see that services.exe will accept the TCP request on port 49676. Once that
is done, you can see that the service “test” was created with the Registry Key –
HKLM\System\CurrentControlSet\Services\test via RegCreateKey.

Wireshark Capture:

28

Highlights from this network capture:

- Source IP/Port
- Destination IP/Port
- Protocol that was used for the communication between hosts. If you go back to the

Server Transport page, I can see one of the endpoints was \PIPE\svcctl. This will directly
correlate with the Protocol seen here.

- Methods that were implemented

Purpose
The purpose of capturing this data in different ways was to verify each aspect of the RPC
communication.

- The client making the request (Found via Procmon).
- The interface it is communicating with (Found via ETW & Wireshark).
- The methods it is implementing (Found via ETW & Wireshark).
- The endpoints that were being mapped to the server (Found via Procmon, ETW,

Wireshark).
- The server application that was accepting that communication (Found via Procmon).

The reason why two different use cases were shown, was because I wanted to show how
different RPC servers vary with how they work and how they were similar. This was shown with
the server code for SCMR being stored in services.exe, where for DRSR was stored in ntdsai.dll.
The services.exe binary didn’t have to be loaded by another binary at boot to expose the server
code it holds to the Windows Runtime; this was handled within the binary code. Whereas,
ntdsai.dll had to be loaded by the lsass.exe binary first before its code was exposed to the
Windows Runtime. However, similarities can be seen in how the interfaces, endpoints, and
methods are handled.

Now that the research has been verified, I can take this research data and hopefully turn it into
telemetry data, which is something I can use for detection/investigation purposes.

29

Research Data to Telemetry
Converting research data into telemetry can be relatively easy, depending on the data sensors
within the environment. What does this mean? It means taking the data attributes I found
during testing and converting them to a data sensor that could potentially use within a larger
environment at scale.

The data I show below correlates directly to the RPC data shown within the research. I am
aware there are multiple detections for these two behaviors, but this will follow a different
methodology to see this activity. That isn’t to say past detections are bad, this is just extra
visibility that I haven’t seen applied a lot to those previous detection efforts. The objective for
this telemetry is - to identify when an RPC server was connected to, to perform an action I
know could be malicious.

The data sensors below were used for telemetry testing:

- Windows Security Events
- Zeek

Note: All testing was done inside of a personal hunting lab setup that Ben Shell and I put together called
Marvel-Lab38. This lab can be accessed, built out, and used by any user. This project holds all of the necessary
components preconfigured and needed to test out this activity.

During the testing process, it was evident that one data sensor that could be used for telemetry
was Zeek. Zeek allows insight into the interface being used, the source/destination ports and IP
addresses, along with the method that was invoked. Here is a link that holds their DCE RPC
configurations:

 https://docs.zeek.org/en/current/scripts/base/protocols/dce-rpc/consts.zeek.html39

After looking closely, it is clear that I could capture this data simply with this sensor. To verify, I
checked within my Splunk instance:

38 https://github.com/jsecurity101/Marvel-Lab
39 https://docs.zeek.org/en/current/scripts/base/protocols/dce-rpc/consts.zeek.html

30

MS-DRSR:

MS-SCMR:

31

These events show me data to everything, except the RPC server application that accepted the
communication. When trying to find this, I ran across Event ID 5712 – A Remote Procedure Call
Was Attempted40. I tested this event and come to find out, it doesn’t log. It is unclear if this
event was logged in the past, but currently the Microsoft Docs say this:

Meaning that this event isn’t meant to actually capture anything, but where there is a will,
there is a way. This goes back to “squeezing” the most out of the data sensors as possible. Even
if an event doesn’t directly, or explicitly, correlate with a behavior, one might indirectly, or
implicitly. There could be a technology built upon RPC that is being logged, that would give me
the visibility needed to see this activity.

After some more digging, I was able to find an event that seem to generate every time I
performed these events. 5156 – The Windows Filtering Platform has permitted a connection41.
Digging into the architecture, come to find out this technology is a network traffic process
platform. I then found this mapping:

40 https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/event-5712
41 https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/event-5156

32

https://docs.microsoft.com/en-us/windows/win32/fwp/windows-filtering-platform-architecture-

overviewhttps://docs.microsoft.com/en-us/windows/win32/fwp/windows-filtering-platform-architecture-
overview

33

Within the “User Mode” section, I can see that this is built upon RPC and that it takes a huge
role in this technology. After identifying that, I then saw that the RPC Server Application can be
seen. This is exactly what I wanted. I was able to verify:

MS-DRSR:

RPC Server Application

Inbound means that this
application didn’t initialize
the connection, proving
the above that this is the
Server Application

Network Packet Data. Saw
similar information within
Zeek.

34

MS-SCMR:

After identifying this, I tested and was able to make a correlation between these two data events
(Windows Security Event 5156 & Zeek). Whichever data attribute one data sensor didn’t
provide, the other was able to. This leads to the suspicion that this telemetry could be used at
scale. This needed some testing.

RPC Server Application

Inbound means that this
application didn’t initialize
the connection, proving
the above that this is the
Server Application

Network Packet Data. Saw
similar information within
Zeek.

35

Telemetry to Scalability
This information would be relatively useless unless there was a way was found to apply this
knowledge at scale for Detection efforts. Within various client environments, I was unable to
test the scalability of Event Code 5156. This event collects a lot of data and if you are using
Splunk, it will eat your indexing limits. Some thoughts on how to apply this event at scale are as
follows:

1. Identify the RPC Servers you want to start having visibility towards (i.e lsass.exe,
services.exe)

2. Inside of the Splunk forwarder, apply this type of inclusions/exclusions that match those
servers - https://www.hurricanelabs.com/splunk-tutorials/windows-event-log-filtering-
design-in-splunk.

a. This would look similar to the following within the inputs.conf if the desire was
to monitor for only services.exe (RPC server) for remote service creation –

b. When doing this, log for inbound connections as you are looking for the servers
accepting the calls.

Note: Some exclusions might need to be applied to the ports/endpoints depending on Microsoft
documentation and benign data. Exclusions might need to be applied to IP addresses. – For example, if
monitoring lsass.exe for the DRSUAPI interface, exclude DC to DC communication.

3. Collect RPC operation data from a network data source (Zeek for example), JOIN the
5156 to this event via Source/Destination Ports/Addresses, and specify the operation
you are interested in. Examples using Jupyter Notebooks can be found below:

36

MS-DRSR:

37

MS-SCMR:

More advanced analytics pertaining to these two attacks can be found here -

MS-DRSR: https://github.com/specterops/ipc-research/blob/master/Analytics/DCSync.ipynb

MS-SCMR: https://github.com/specterops/ipc-
research/blob/master/Analytics/Remote%20Service%20Creation.ipynb

I was able to identify via Palantir that using available EDR network data, there is similar data to
the 5156. This could be used instead at scale JOIN'd with a Network Source to achieve the same
goal. Thank you to Dane Stuckey and Palantir for looking into this.

38

Conclusion

As abstractions for attacks are continued to be created, the detection engineering team here at
SpecterOps keep identifying various IPC mechanisms as one of the technologies being used
within the attack. One of which that stood out was RPC. Due to the lack of information on the
technology and what we thought was lack of data sources pertaining to its technology, I
decided to dive into its inner workings to understand it at a deep level behavior.

While researching this topic, I knew that there had to be data that Detection Engineers could
use to identify when RPC was used maliciously. In order to find this data understanding how
RPC worked and understanding how attackers have and could use it to do their malicious
behavior were both key factors. Identifying data sources that can be used to see the RPC server
application and the RPC communication both, in research data and data at scale, were two
goals that were resolved while doing this research.

Lastly, my hope is that this methodology can be adapted into your research process and its
findings be collected as an area of possible telemetry for your environment.

I hope you enjoyed this research!

